

The first discretely tunable tabletop VUV laser source for angle-resolved photoemission spectroscopy

After being dispersed with a lithium fluoride prism, the bright VUV beams generated by the Hyperion VUVV induce bright fluorescence on a Ce:YAG scintillator. In the commercial Hyperion VUV, a monochromator selects a single wavelength to deliver to the users experimental chamber.

Probe material and molecular properties with unprecedented flexibility on ultrafast time scales

Hyperion VUV is the first tunable commercial femtosecond source in the vacuum ultraviolet (VUV) region. Discretely tunable from 6.0–10.8 eV, Hyperion VUV enables you to study a wide range of materials and materials properties. For example, in angle-resolved photoemission (ARPES) experiments, this tunability allows researchers to distinguish surface effects from bulk effects. For time-of-flight (TOF) studies of molecules, the tunability can distinguish otherwise identical isomers.

Hyperion VUV is "application ready," with appropriate focusing and beam-steering elements that will enable fast integration with your experimental apparatus. Hyperion VUV can also be used with a window between the source and the experimental chamber, guaranteeing that applications demanding ultrahigh vacuum (such as ARPES) will remain contamination-free.

Hyperion VUV Benefits

- Discrete tunability of the photon energy overcomes the limitations of fixed wavelength sources, bringing the power of the synchrotron to the laboratory
- Near diffraction-limited beam can achieve a small spot size to measure many types of samples, including materials that are polycrystalline, spatially inhomogeneous, faceted, or simply very small
- Femtosecond pulse durations to probe ultrafast dynamics of molecules and materials
- 1 MHz repetition rate enables rapid data collection and avoids space-charge effects

Applications

- Angle-resolved photoemission spectroscopy (ARPES)
- · Time-resolved ARPES
- Photoemission electron microscopy (PEEM)
- Photo-ionization mass spectroscopy (PIMS)
- · Molecular time-of-flight (ToF) studies
- Applications that require tunable VUV light
- Applications that require femtosecond pulses of VUV light

Features

- Discretely tunable between 6.0-10.8 eV
- · Highly focusable
- High energy resolution (<10 meV)
- Large k-space coverage
- High momentum resolution
- Ultrafast

Hyperion VUV

Hyperion VUV Specifications

Da	ıra	m	Δŧ	۵r
_	11 4		eι	eг

Photon Energy (eV)	User selectable: 6.0, 7.2, 8.4, 9.6, 10.8		
Repetition Rate	100 kHz- 1 MHz		
Power Stability	<5% [RMS] over one hour		
Photon Flux	Full bandwidth (~40 meV)	Moderate bandwidth (<5 meV)	
7.2 eV	10 ¹² ph/s delivered	5x10 ¹⁰ ph/s delivered	
10.8 eV	10 ¹⁰ ph/s delivered	5x10 ⁸ ph/s delivered	
Laser-head size	0.75 x 1.5 meters		
Electrical power	110/230 V, 20 A (x2)		

