

-Greatly reduced data acquisition times using millijoule pulses at high 5-30 kHz rep rates!

The RAEA 2.0 is the highest performance ultrafast highpower Ti:sapphire laser system on the market. Using KMLabs' unique architecture, this single-stage amplifier system can generate up to 20 W output power, with unprecedented flexibility. Using 4th-generation Permacool[™] cryogenic cooling, the RAEA can uniquely vary the pulse energy and repetition-rate, with minimal change in output beam characteristics or average power. This allows users to use the optimal pulse energies for their applications, to greatly reduce data acquisition times. The RAEA pulse duration, characterized using rigorous FROG techniques, is 35fs, with options for shorter pulses. The RAEA is also optimized for driving bright, ultrastable, high-order harmonic generation at 10-50 nm, achieving record flux and stability (see KMLabs' XUUS product).

Specifications	
User Tunable Rep Rate	5-30 kHz
Average Power	Up to 20 W standard
Pulse Energy	3mJ @ 5 kHz
	2 mJ @ 10 kHz
	0.6 mJ @ 25 kHz
Pulse Width	35 fs
Spatial Mode	Near TEM ₀₀ , M ² < 1.25
Power Stability	< 1% RMS over 12 hrs
Dimensions (mm)	1800 L x 950 W x 620 H

www.kmlabs.com • 305-544-9068 • 4775 Walnut St., Suite 102 • Boulder, CO 80301 We are constantly improving the performance of our products. Please check back with us or visit our website for the latest updates and specifications.

RAEA 2.0

Applications

- High-harmonic generation
- Attosecond science
- Femtochemistry
- THz generation

Options

- Short Pulses: 25 35fs
- Optional Pulse Shaper Module
- Pulse Picker

Laser Focus World Innovation Award **Platinum Winner**

The RAEA 2.0 is designed using an ultrastable, flexible, and modular approach, expressly for heavy use up to 24/7 - a facility class ultrafast laser system. KMLabs has also supplied 2- and 3stage Ti:sapphire systems delivering TW peak power at kHz repetition-rates and average power exceeding 30W. The ultimate performance limits for Ti:sapphire laser systems technology have yet to be fully explored, so if you have extraordinary requirements, we welcome a challenge. Contact us!

References

- 1. Caplins et al., Atom probe tomography using an extreme ultraviolet trigger pulse. RSI **94**, 093704 (2023).
- Dorney et al., Actinic inspection of the extreme ultraviolet optical parameters of lithographic materials enabled by a table-top, coherent extreme ultraviolet source. Journal of Micro/Nanopatterning, Materials, and Metrology 23, 041406 (2024).
- 3. Tanksalvala et al., Element-specific high-bandwidth ferromagnetic resonance spectroscopy with a coherent extreme-ultraviolet source. Phys. Rev. Applied **21**, 064047 (2024).
- 4. Esashi et al., Tabletop extreme ultraviolet reflectometer for quantitative nanoscale reflectometry, scatterometry, and imaging. RSI **94**, 123705 (2023).
- Tanksalvala et al., Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry. Science Advances 7, eabd9667 (2021).
- 6. Zhang et al., Bipolaronic Nature of the Pseudogap in Quasi-One-Dimensional (TaSe4)2l Revealed via Weak Photoexcitation. Nano Letters **23**, 8392 (2023).
- Ryan et al., Optically controlling the competition between spin flips and intersite spin transfer in a Heusler half-metal on <100-fs time scales. Science Advances 9, eadi1428 (2023).
- McBennett et al., A predictive understanding of highly-confined heat flow in general semiconductor nanosystems, from nanomeshes to metalattices. Nano Letters 23, 2129 (2023).
- Frazer et al., Full characterization of ultrathin 5-nm low-k dielectric bilayers: Influence of dopants and surfaces on the mechanical properties. Phys. Rev. Materials 4, 073603 (2020).

www.kmlabs.com • 305-544-9068 • 4775 Walnut St., Suite 102 • Boulder, CO 80301 We are constantly improving the performance of our products. Please check back with us or visit our website for the latest updates and specifications.